Policy Implications
Based on the Scientific Consensus Statement on Environmental Agents Associated with Neurodevelopmental Disorders
From the Learning and Developmental Disabilities Initiative
July 28, 2008

Given established scientific knowledge, protecting children from neurotoxic exposures from the earliest stages of fetal development is clearly an essential public health measure. By reducing environmental factors that may lead to learning and developmental disorders, we will create a healthier environment in which all children can reach and maintain their full potential.

Drafted and edited by:
Steven G. Gilbert, PhD, DABT, Institute of Neurotoxicology and Neurological Disorders
Elise Miller, MEd, Institute for Children’s Environmental Health and the Collaborative on Health and the Environment’s Learning and Developmental Disabilities Initiative

Advisors:
Aimee Boulanger, Institute for Children’s Environmental Health
Sarah Doll, SAFER
Judith Robinson, Environmental Health Fund
Ted Schettler, MD, MPH, Science and Environmental Health Network
Nancy Snow, MS, Institute for Children’s Environmental Health
Joel Tickner, ScD, University of Massachusetts Lowell, Lowell Center for Sustainable Production
David Wallinga, MD, MPA, Institute for Agriculture and Trade Policy
Bernard Weiss, PhD, University of Rochester School of Medicine and Dentistry

Note: The reviewers listed above provided comments and suggestions during the drafting process, but do not necessarily agree with every aspect of this paper. The signatories at the end of the paper are those who fully agree with and support this statement.
Contents
1 Introduction ... 3
 1.1 Purpose of the Document ... 3
 1.2 Policy Considerations .. 3
 1.3 Ethical Considerations ... 4
 1.4 Action Considerations ... 4
2 Policy Recommendations .. 4
 2.1 Research and Testing .. 4
 2.1.1 Fund and implement the National Children’s Study ... 4
 2.1.2 Establish a national registry ... 5
 2.1.3 Expand required neurotoxicity screening ... 5
 2.1.4 Expand required neurotoxicity testing ... 5
 2.1.5 Increase consumer product testing and monitoring 5
 2.1.6 Implement safer alternatives ... 5
 2.1.7 Ban products containing chemicals that may be harmful to children 5
 2.1.8 Expand biomonitoring studies of children and adults 5
 2.1.9 Study interactions of these chemicals with other factors 6
 2.2 Chemical Policy Reform .. 6
 2.2.1 Implement right-to-know laws ... 6
 2.2.2 Reform the Toxic Substances Control Act .. 7
 2.2.3 Strengthen the Toxics Release Inventory ... 7
 2.2.4 Monitor and regulate occupational exposures ... 7
 2.3 Recommendations Regarding Specific Chemicals .. 7
 2.3.1 Regulation .. 7
 2.3.1.1 Tobacco smoke ... 7
 2.3.1.2 Lead ... 7
 2.3.1.3 Mercury .. 8
 2.3.1.4 Pesticides ... 8
 2.3.1.5 Food additives ... 8
 2.3.1.6 PBDEs .. 8
 2.3.1.7 Solvents .. 9
 2.3.1.8 PAHs ... 9
 2.3.1.9 Endocrine disruptors ... 9
 2.3.1.10 Fluoride ... 9
 2.3.2 Remediation .. 10
 2.3.2.1 Lead ... 10
 2.3.2.2 PCBs ... 10
 2.3.2.3 Perchlorate ... 10
 2.3.2.4 Arsenic and manganese ... 10
 2.4 Education .. 10
3 Summary .. 11
4 Acknowledgments .. 12
5 References ... 13
1 Introduction

This policy statement is derived from and accompanies the Scientific Consensus Statement on Environmental Agents Associated with Neurodevelopmental Disorders published in February 2008 by the Collaborative on Health and the Environment’s Learning and Developmental Disabilities Initiative (http://www.iceh.org/LDDI.html). That Scientific Consensus Statement frames the current state of scientific understanding regarding links between environmental factors and learning and developmental disabilities. It also identifies important research areas that hold promise of further advancing our understanding.

The goal of this associated policy statement is to help scientists, medical professionals, policymakers, public health advocates and the general public address the important issues raised by preventable environmental exposures that may contribute to learning and developmental disabilities.

1.1 Purpose of the Document

The purpose of the policy recommendations is to define action that could or should be taken based upon the current state of scientific knowledge. Action is essential if we are to reduce environmental exposures that may be linked to learning and developmental disabilities (LDDs) and ensure our children develop in an environment in which they can reach and maintain their full potential.

1.2 Policy Considerations

There is a vast amount of information already available upon which to base sound policy decisions. As Garrett Hardin (1) observed in 1968, many problems cannot be solved by technical solutions or additional research but only through responsible management of the problem. For example, our society is still contending with the effects of adding lead to paint and gasoline, even though its toxic effects were well-documented long before it was banned from these products in the United States. Sufficient knowledge was available regarding the hazards of lead: the European League of Nations took a precautionary approach and banned lead-based paint in the 1920s.

Replacement of some hazardous materials currently used will require technological innovation to develop less-toxic alternatives, or to develop new processes, such as a green-chemistry approach. Green chemistry, or sustainable chemistry, focuses on the design of chemical products and processes that reduce or eliminate the use or generation of hazardous substances with the broad goal of developing environmentally benign and sustainable technological solutions for society (2, 3). Protecting children requires a precautionary approach (4-6) that shifts the burden of responsibility to producers or manufacturers of products to demonstrate safety prior to potential exposure or to use the least-harmful chemicals available.
1.3 Ethical Considerations

Recognition is growing that ethical, legal and social considerations play a crucial role in public-health decision making, especially regarding children; these decisions involve social-justice implications and inherent conflicts among individuals, producers and users of toxic materials (7-11). Current knowledge about many environmental contributors to learning and developmental disabilities now creates an ethical duty and responsibility to act to protect children’s health and well-being (4, 12).

Permitting and accepting childhood exposure to contaminants that result in compromised learning and altered behavior violates the basic tenets of biomedical ethics. The principle of beneficence (do good) requires that benefits be maximized while doing no harm. Respect for autonomy or personhood is violated when children are unnecessarily exposed to harmful substances. Respect of person also implies informed consent, and no child has given informed consent for exposure to harmful chemicals. These basic principles can also be expanded to include a right to know and to understand what we are exposed to. Additional consideration should be given to the sustainability of our actions.

The principle of justice requires that burdens be shared fairly, and because children are more vulnerable they endure a greater burden from exposures. Further disparities related to socioeconomic status are demonstrated by the increased burden of lead exposure in children living in poverty (13). Perhaps America’s first bioethicist Aldo Leopold said it best when he wrote in 1949: "A thing is right when it tends to preserve the integrity, stability, and beauty of the biotic community. It is wrong when it tends otherwise" (14). It is wrong to allow the preventable exposure of children to environmental agents that are associated with neurological disorders, including learning and developmental disabilities.

1.4 Action Considerations

Change in government policy is absolutely required to protect the health of our children. In the last two decades, policy initiatives at the federal government level to regulate toxic chemicals in manufacturing and everyday products have been stymied by an antiregulatory approach. As a result, state governments have taken the initiative to restrict or eliminate exposures to hazardous chemicals. For example, San Francisco has adopted a precautionary approach to decision making. Washington and Maine have moved to ban brominated flame retardants (PBDEs) from many consumer products, and in 2008 Washington banned children’s products with lead, cadmium and phthalates.

Action involves taking the initiative to change people’s understanding of the issues related to protecting children’s health and well-being. Educating the media, legislators and their staff, students, policymakers and the general public is essential. The focus of this education includes both the scientific facts and ethical foundations but also the policy changes required to protect children’s health (4). Below are suggestions for policy changes or actions to ensure that all children develop in an environment in which they can reach and maintain their full potential.

2 Policy Recommendations

2.1 Research and Testing

2.1.1 Fund and implement the National Children’s Study

The National Children’s Study (NCS) (15, 16) will examine the effects of environmental influences on the health and development of more than 100,000 children across the United States, following them from before birth until age 21. The goal of the study is to improve the health and well-being of children. Families who participate in the National Children’s Study will come from 105 designated study locations (counties or groups of counties) across the United States (16). Initially funded in 2000, NCS announced its first 22 study centers in 2007. For this study to be carried out in a useful, proper and timely manner, it needs to be fully funded for the entire length of the study, rather than in a year-by-year or piecemeal fashion (http://www.nationalchildrensstudy.gov/).
Long before the study ends, data will become available to inform us about the developmental effects of environmental and chemical exposures. We urge adequate effort and funding to publish results from the NCS and make appropriate policy recommendations.

2.1.2 Establish a national registry
Having access to the number and distribution of diagnoses of ADHD, reading disabilities and autism spectrum disorder could lead to studies of correlations with possible exposures. Better knowledge of potential associations between neurological disorders and environmental factors can lead to strategies for prevention. We recommend creating a national registry or surveillance to record the incidence of learning disabilities and development disorders. The Surveillance Epidemiology and End Results (SEER) program by the National Cancer Institute is currently successful in gathering and publishing cancer statistics in several areas nationally, although the program includes data from only about 25% of the US population. It might be used as a model for a program on neurodevelopmental disorders, although we recommend a registry to track incidence of disorders and exposures including all areas across the country.

2.1.3 Expand required neurotoxicity screening
Government regulatory agencies, such as the US Environmental Protection Agency (EPA) and the US Food and Drug Administration (FDA) should require screening for neurotoxicity for all chemicals. In addition, government agencies should support the development of high-quality validated in vitro methods to test product safety, as spearheaded by the Center for Alternatives to Animal Testing at Johns Hopkins University (http://caat.jhsph.edu/about/index.htm).

2.1.4 Expand required neurotoxicity testing
Government regulatory agencies should include developmental neurotoxicity testing as a core requirement in safety tests for all chemicals including new and existing pesticides, food additives, cosmetic ingredients and obstetric and children’s drugs. For an example see the 2007 Resolution of the Learning Disabilities Association of Canada (http://www.ldac-taac.ca/Environment/position_resolution-e.asp). Chemicals need to be studied both individually and in combinations that are associated with human exposure.

2.1.5 Increase consumer product testing and monitoring
Recently a number of children’s products, including jewelry, toys and candy, have been found to contain high concentrations of lead. Both federal and state governments must make greater efforts to monitor consumer products and require full disclosure in labeling of the chemical composition of products.

2.1.6 Implement safer alternatives
The government should create incentives to move toward safer alternatives to neurotoxic substances, requiring them where feasible. Support for finding safer alternatives will be an important part of successfully implementing bans on unsafe chemicals. State efforts will be important, such as the Toxics Use Reduction Institute (TURI - http://www.turi.org/) at the University of Massachusetts Lowell, a successful collaborative research program that assists businesses in reducing the use of hazardous chemicals or processes.

2.1.7 Ban products containing chemicals that may be harmful to children
Governments – local and national – should require that products to be used by children (and other vulnerable populations) not contain harmful chemicals. Oversight agencies must have appropriate authority to require a prompt recall of hazardous products.

2.1.8 Expand biomonitoring studies of children and adults
Biomonitoring studies by the US Centers for Disease Control and Prevention (CDC) and other organizations have been instrumental in documenting ongoing and changing exposures to environmental contaminants and other chemicals. These CDC studies should be continued and expanded. Individual states should be
encouraged to fund routine biomonitoring programs on children and groups of people that may be overexposed to certain classes of chemicals, such as subsistence fishers and workers in agriculture or other occupations. Knowledge of body burden and of actual levels of exposure is critical for determining appropriate action to be taken regarding those exposures.

2.1.9 Study interactions of these chemicals with other factors

It is now apparent that the effects of exposure to environmental contaminants can be exacerbated by a stressful environment (17, 18). Other evidence shows that individual sensitivity to exposures varies greatly, in part due to genetic differences (19-21). We need to determine the nature of interactions between environmental exposures, stress, nutrition, genes, infectious disease and other factors. Based on this research, we can develop and implement effective policies to reduce multiple factors that may interact to contribute to neurodevelopmental disorders.

2.2 Chemical Policy Reform

Most Americans assume, incorrectly, that if a product is on the market it must have been deemed “safe” by some branch of government; thus, the public is unaware of the actual potential for harm from products and chemicals that are not adequately tested for safety. The failure to develop and implement appropriate chemical policy regulations nationally has resulted in a large number of chemicals in use with very few data on health effects. Recognizing a similar problem, the European Union (EU) recently adopted a chemical regulation policy referred to as REACH (Research, Evaluation, Authorization and Restriction of Chemicals) (22, 23). REACH requires industry or manufacturers that are selling products in the EU to disclose product composition and provide data on the hazards of the chemicals used, which includes US-based companies.

A recent report by Michael Wilson of the California Policy Research Center, who has worked closely with international colleagues on REACH, addresses issues regarding establishing a broader approach to chemical policy incorporating the use of green chemistry (see Carnegie Mellon Institute for Green Science, http://www.chem.cmu.edu/groups/collins/index.html). Wilson identifies a data gap, a technology gap and a safety gap in current US chemical policy as established by the Toxic Substances Control Act (3). The report articulates approaches to policy reform to narrow these gaps with the goal of establishing a more sustainable use of chemicals. A fourth gap, the responsibility gap, has also been posited (24). The responsibility gap addresses ethical and advocacy issues related to the public, media, business and academic groups.

Manufacturers need to build public health considerations into the design stage of new products. Rather than design and create products that are harmful and then try to regulate exposures and pay for remediation and clean up, prudence and good sense dictate that designing safe products is more cost-effective, safer and more sustainable for both the public good and manufacturers.

Reforming our current chemical regulatory system should address at least the following items:

2.2.1 Implement right-to-know laws

People have a right to know what chemicals are used in products. Current product-labeling laws are weak or nonexistent. For example, consumers should be able to find out whether a personal-care product contains hormone-disrupting phthalates or which supposedly “inert” ingredients are used in pesticides. At this time, manufacturers are not required to provide this information. Harmful chemicals may also be hidden by being listed only as “fragrance.” Manufacturers should be required to provide information about the hazards to human health of their chemicals and disclose which products contain those chemicals. Consumers have a right to know and to understand the implications of environmental releases, chemical hazards and chemicals in products.
2.2.2 Reform the Toxic Substances Control Act
The Toxic Substances Control Act (TSCA) was passed by the United States Congress in 1976 to regulate the introduction of new or existing chemicals. When TSCA was enacted approximately 62,000 chemicals existed, and the vast majority of these are freely allowed in commerce without safety testing. The EPA, charged with managing chemical policy through TSCA, has removed or required a full safety assessment of very few chemicals. We recommend that current federal chemical policy, including TSCA, be comprehensively reformed. The proposed “Kids-Safe Chemicals Act” in Congress represents one approach to revamping the federal system for regulating chemicals.

2.2.3 Strengthen the Toxics Release Inventory
The public has a right to know what chemicals and substances are being released in the neighborhoods where they live, work, attend school and visit in their daily lives. The EPA’s Toxics Release Inventory (TRI) is a publicly available database that contains information on toxic chemical releases and waste-management activities reported annually by certain industries as well as by federal facilities. It has been a valuable tool for communities and watchdog groups. The EPA recently proposed changing the reporting of releases from every year to every other year and increasing the threshold for detailed reporting from 500 pounds to 5,000 pounds of release. Both changes would have reduced the information available to the public about toxic releases and were withdrawn in December 2007 in response to public comments (25). The TRI should not be weakened or compromised, but should be as comprehensive and accessible as possible.

2.2.4 Monitor and regulate occupational exposures
Federal and state agencies need to better monitor and educate employers and employees about the hazards of workplace exposures to the worker as well as the consequences of take-home exposures to workers’ families. Notable examples of take-home toxicants known to cause serious effects on children and adult family members include lead, pesticides and asbestos. The funding for the Occupational Safety and Health Administration (OSHA) and the National Institute for Occupational Safety and Health (NIOSH) needs to be increased and their efforts to protect the health of workers actively supported.

2.3 Recommendations Regarding Specific Chemicals
Some neurotoxic chemicals continue to be used and released into the environment, while others have been discontinued but persist in the environment from past uses and releases. Both regulation and remediation are needed to reduce exposures.

2.3.1 Regulation
As of June 2008, fifteen states have banned PBDEs (flame retardants), and several states have also banned mercury, lead and/or phthalates from many consumer products. In 2008 Washington, Maine and Connecticut passed legislation requiring their states to create priority lists of chemicals, especially those that may impact children’s health. We applaud these legislative actions and recommend the following to continue reducing exposures to toxic chemicals.

2.3.1.1 Tobacco smoke
Options to consider include further regulating tobacco products and extending the restrictions on smoking in public places when children are present, as well as education and regulation to reduce smoking in private places when vulnerable individuals are put at risk, such as in automobiles. Arkansas, California, Louisiana, Maine, Nova Scotia and Puerto Rico have recently banned smoking in cars when children are present, and several other states, provinces and cities are considering similar bans.

2.3.1.2 Lead
While the CDC acknowledges that learning and developmental effects of lead occur at blood levels below 10 micrograms per deciliter (mcg/dL) (26, 27), it has not changed the blood-lead level for intervention. The failure of CDC to lower the action level is not consistent with current scientific studies and provides poor guidance to public health officials and the general public (28). Given this, the current
The action level should be lowered to 2 mcg/dL to better protect children’s health as described by Gilbert and Weiss (28).

The most common source of childhood lead exposure is from lead paint in the home. Buildings and residences with lead-based paint must be identified and remediated. Eliminating the use of lead in consumer products is also necessary to reduce children’s exposures and prevent harmful effects. Lead-contaminated products that children come in direct contact with include jewelry, candy, lunch boxes, ethnic remedies, and toys but there is also concern about lead in drinking water from plumbing fixtures. Additional sources of lead that can be reduced or eliminated include take-home contamination from occupational exposures, lead wheel weights, fishing weights and lead shot from hunting.

2.3.1.3 Mercury
There is no doubt that even low-level mercury exposure, in any form, is hazardous to the developing organism and should be avoided. Every effort must be made to reduce or eliminate mercury from products such as thermostats, thermometers, automobile switches and all vaccines. Proper disposal of products or equipment containing mercury is also needed, including traps in dental offices, as well as a requirement that coal-fired plants utilize the latest available equipment to control mercury effluent. Finally, worldwide trade and sale of mercury should be banned as should use of mercury in gold mining.

The FDA recently recommended that pregnant women consider options to dental fillings that contain mercury (http://www.fda.gov/cdrh/consumer/amalgams.html). We propose that this recommendation be strengthened to advise pregnant women and young children to avoid mercury in dental fillings.

2.3.1.4 Pesticides
Pesticides contaminate both our foods and our living areas. A recent study clearly documents that urban children are exposed to organophosphorus pesticides from food (29). Steps are needed both to reduce the use of dangerous pesticides and to notify and report on use that can impact neighbors and residents. A widespread and nonregulatory reduction in the use of pesticides in agriculture could be made through shifting current farm subsidy policies away from industrial farms that rely heavily on pesticide use and toward sustainable food production.

Pesticides continue to be widely used in both agricultural and urban settings. Fortunately, pesticide use can be targeted at local levels through entities from school boards to city, county and state governments. Several cities in Canada have enacted bans on residential pesticide use for purely aesthetic reasons, known as “cosmetic pesticide use.” The cosmetic use of pesticides should be restricted and replaced with integrated pest management (IPM). IPM should become the standard for child care centers and schools.

Because it remains difficult and in many cases impossible to determine how much of what pesticide is used where, expanded pesticide-use reporting should be implemented, with this information made available to the public and to policymakers. The increased density of people living in rural farm areas requires more careful management of agricultural pesticides with reasonable notification of pesticide use.

2.3.1.5 Food additives
Recent evidence has contributed to an established literature finding that food colors and additives have adverse effects on children, such as ADHD (30). More research needs to be done to assess the adverse effects of food additives, particularly for children and other sensitive individuals. Parents and care providers need guidance on how to adjust diets to reduce exposure to food additives.

2.3.1.6 PBDEs
Polybrominated diphenyl ethers (PBDEs) were commonly produced in three forms. Production of two forms was ended abruptly as evidence of human exposure and potential health effects were made known. The third form, deca BDE, has recently been banned from some consumer products in two US states and is banned in the European Union from use in electrical and electronic equipment as of July 1, 2008. A national ban on PBDEs should be initiated, with appropriate alternatives used when needed.

2.3.1.7 Solvents
A wide range of organic solvents are used in the workplace and in consumer products. Research should be funded to develop appropriate alternatives and encourage the use of less-toxic alternatives in the workplace and in commercial products. This approach has worked in Massachusetts where the use of solvents by industry has been reduced (http://www.turi.org/). The use of solvents in nail polishes and other cosmetic products should also be reduced nationally to protect both workers and consumers.

2.3.1.8 PAHs
The production and distribution of polycyclic aromatic hydrocarbons (PAHs) can be decreased by reducing the burning of petroleum-based fuel and switching to alternative sources of energy. This is particularly important for people living near roadways or shipping ports. This effort would have the added benefit of contributing to a reduction in climate change.

2.3.1.9 Endocrine disruptors
The number of suspected endocrine disruptors continues to increase, and new routes of exposure are being discovered. For example, bisphenol A (BPA) in drinking-water bottles and phthalates in children’s toys and hospital supplies have resulted in documented exposures (31). Health effects of concern related to endocrine disruptors include cancer and altered reproduction and development, including neurodevelopmental effects (32, 33). We must simultaneously reduce exposure to endocrine disruptors, create incentives for safer products and accelerate research regarding exposure and health effects. Canada recently banned the use of BPA in baby bottles, and several US states are considering bans. Information on the effects of endocrine disruptors is available at the Endocrine Disruption Exchange (TEDX - http://www.endocrinedisruption.com/).

2.3.1.10 Fluoride
In 2006 the National Academy of Sciences (NAS) produced a report, Fluoride in Drinking Water: A Scientific Review of EPA’s Standards (34), reviewing the appropriateness of EPA’s four parts per million (ppm) maximum contaminant level goal (MCLG) for fluoride in drinking water. This standard was developed before fluoride was added to many other consumer products. The NAS reports states “the consistency of the results appears significant enough to warrant additional research on the effects of fluoride on intelligence.” The NAS also recommended that the EPA update the risk assessment of fluoride to include new data on health risks and better estimates of total exposure from sources in addition to drinking water, including an assessment of potential neurobehavioral effects of fluoride. We strongly encourage the EPA to immediately undertake a comprehensive health risk assessment of fluoride exposures from all sources. Until a better analysis of the possible health implications of exposures to multiple sources of fluoride is available, we urge careful consideration before adding fluoride to additional drinking water supplies.

In addition, the Centers for Disease Control, the American Dental Association and state/local dental and public health providers should greatly expand education about fluoride exposure and potential health effects, particularly advising parents to avoid using fluoridated water in baby formula and to carefully supervise children under six to prevent swallowing when brushing with fluoride toothpaste.
2.3.2 Remediation

2.3.2.1 Lead
Lead exposure from paint in homes built before 1978, and particularly those built before 1950, remains a threat to children’s development. Federal and local governments should make every effort to remediate or remove lead-based paint, holding manufacturers, landlords or others responsible as appropriate.

2.3.2.2 PCBs
Polychlorinated biphenyls (PCBs) are a legacy of the past but remain dangerous because they bioaccumulate in fish and other foods. This is particularly important for people that rely on fish as a major component of their diet. Both governments and industry must continue efforts to reduce PCBs in the environment and educate people about the hazards of PCB exposure.

2.3.2.3 Perchlorate
In addition to occurring naturally in some areas, perchlorate continues to be released into water and soil from explosives and rocket fuel. Children’s exposures occur from drinking water, certain foods such as lettuce, and breast milk. Perchlorate interferes with iodine uptake by the thyroid which affects fetal and infant development, including brain development. Establishing a safe drinking level for perchlorate has been controversial, with debates over uncertainty of the developmental effects (35-37). The US EPA established a reference dose (RfD) for perchlorate at 0.0007mg/kg/day and the California EPA established a drinking-water standard of 6 ppm. Given the potential developmental effects of perchlorate exposure, a precautionary approach must be taken and a low exposure standard established of no more than 1 ppm in drinking water. In addition, medical groups and public health offices should recommend or require thyroid-level screening of women of childbearing age, especially in areas with heavy perchlorate contamination. Children of women with reduced thyroid levels or suboptimal iodine status are at added risk of developmental effects from perchlorate exposure.

2.3.2.4 Arsenic and manganese
Arsenic and manganese are often found in drinking water. Studies have suggested that excess manganese not only in drinking water, but in infant formula and in air, may have neurotoxicological impacts on children (38-40). Federal funding is needed to support more robust studies on the effects that excessive manganese exposure may have on children and to develop guidelines for avoiding overexposure.

While additional research on the developmental effects of low-level chronic exposure to arsenic is necessary, the acceptable levels in drinking water should be decreased below the current EPA established levels of 10 ppb. The California Public Health Goal (PHG) of 4 parts per trillion (ppt) arsenic in drinking water should be considered.

2.4 Education
Knowledgeable parents and caregivers are essential to protecting a child’s health and safety from preconception through childhood. Prevention of toxic exposures and their subsequent health effects is far more cost-effective than treatment. Prospective parents need to be aware of the health effects of alcohol, nicotine, lead, mercury, pesticides, arsenic, food additives, emerging threats, and other environmental agents, as well as of ways to prevent exposure. This is particularly important for economically disadvantaged groups because of a higher average exposure to lead, tobacco smoke and other contaminants in this population. Direct education of parents, as well as better information and parent-education training for health-care providers, should be a priority. The Pediatric Environmental Health Specialty Units need to be fully funded in order to address these educational needs (www.atsdr.cdc.gov/HEC/natorg/pehsu.html).
3 Summary

Children have a right to an environment in which they can reach and maintain their full potential – an environment free from preventable chemical exposures beginning with preconception and continuing throughout development. We have an obligation to provide an optimal environment for all children. The scientific evidence on the neurodevelopmental effects of many chemicals is well established, and action to reduce exposure is essential to prevent adverse health effects.

The consequences of LDDs are most significant for the affected individual but also have profound implications for the family, school system, local community and greater society. Despite some uncertainty, there is sufficient knowledge to mandate preventive action to reduce fetal and childhood exposures to environmental contaminants. Given the serious consequences of LDDs, a precautionary approach is warranted to protect the most vulnerable members of our society.

We have a duty to be thoughtful public-health advocates and champion progressive public-health policy that protects our children.
4 Acknowledgments

This document would not exist but for the drive and vision of Elise Miller, MEd, executive director of the Institute for Children’s Environmental Health (ICEH) and national coordinator of the Collaborative on Health and the Environment’s Learning and Developmental Disabilities Initiative, as well as the persistence and expertise of Steven G. Gilbert, PhD, DABT. A special acknowledgment goes to Nancy Snow, MS, research and communications manager at ICEH, who consistently provided thoughtful editing and invaluable organizational comments and always responded throughout numerous drafts. A. T. Birmingham-Young of Precise Words Editing Services provided final copyediting. And finally, thank you to the entire review team for their formal and informal suggestions, encouragement and support in conceiving and developing this document.
5 References

